The Geodesic Farthest-Point Voronoi Diagram in a Simple Polygon

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Geodesic Farthest-point Voronoi Diagram in a Simple Polygon

Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O(n log log n+m logm)time algorithm to compute the geodesic farthest-point Voronoi diagram of m point sites in a simple n-gon. This i...

متن کامل

The Farthest-Point Geodesic Voronoi Diagram of Points on the Boundary of a Simple Polygon

Given a set of sites (points) in a simple polygon, the farthest-point geodesic Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O((n + m) log logn)time algorithm to compute the farthest-point geodesic Voronoi diagram for m sites lying on the boundary of a si...

متن کامل

Farthest-Polygon Voronoi Diagrams

Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log n) time algorithm to compute it. We also prove a number of structural properties of this ...

متن کامل

A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram in a Simple Polygon

The geodesic Voronoi diagram ofm point sites inside a simple polygon of n vertices is a subdivision of the polygon into m cells, one to each site, such that all points in a cell share the same nearest site under the geodesic distance. The best known lower bound for the construction time is Ω(n+m logm), and a matching upper bound is a long-standing open question. The state-of-theart construction...

متن کامل

Euclidean farthest-point Voronoi diagram of a digital edge

A digital edge is a digitization of a straight segment joining two points of integer coordinates. Such a digital set may be analytically defined by the rational slope of the straight segment. We show in this paper that the convex hull, the Euclidean farthest-point Voronoi diagram as well as the dual farthest-point Delaunay triangulation of a digital edge can be fully described by the continued ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithmica

سال: 2019

ISSN: 0178-4617,1432-0541

DOI: 10.1007/s00453-019-00651-z